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Simple Summary: Next-generation sequencing (NGS) is a powerful tool used in genomics research.
NGS can sequence millions of DNA fragments at once, providing detailed information about the
structure of genomes, genetic variations, gene activity, and changes in gene behavior. Recent ad-
vancements have focused on faster and more accurate sequencing, reduced costs, and improved data
analysis. These advancements hold great promise for unlocking new insights into genomics and
improving our understanding of diseases and personalized healthcare. This review article provides
an overview of NGS technology and its impact on various areas of research, such as clinical genomics,
cancer, infectious diseases, and the study of the microbiome.

Abstract: The advent of next-generation sequencing (NGS) has brought about a paradigm shift in
genomics research, offering unparalleled capabilities for analyzing DNA and RNA molecules in a
high-throughput and cost-effective manner. This transformative technology has swiftly propelled
genomics advancements across diverse domains. NGS allows for the rapid sequencing of millions of
DNA fragments simultaneously, providing comprehensive insights into genome structure, genetic
variations, gene expression profiles, and epigenetic modifications. The versatility of NGS platforms
has expanded the scope of genomics research, facilitating studies on rare genetic diseases, cancer
genomics, microbiome analysis, infectious diseases, and population genetics. Moreover, NGS has
enabled the development of targeted therapies, precision medicine approaches, and improved
diagnostic methods. This review provides an insightful overview of the current trends and recent
advancements in NGS technology, highlighting its potential impact on diverse areas of genomic
research. Moreover, the review delves into the challenges encountered and future directions of NGS
technology, including endeavors to enhance the accuracy and sensitivity of sequencing data, the
development of novel algorithms for data analysis, and the pursuit of more efficient, scalable, and
cost-effective solutions that lie ahead.

Keywords: next-generation sequencing; genomics; microbiome; molecular diagnostics; bioinformatics;
Nanopore; PacBio; Illumina; pyrosequencing

1. Introduction

Next-generation sequencing (NGS) has revolutionized genomics, expanding our
knowledge of genome structure, function, and dynamics. This groundbreaking tech-
nology has enabled extensive research and allowed scientists to explore the complexities of
genetic information in unprecedented ways. With its high-throughput capacity and cost-
effectiveness, NGS has become a fundamental tool for researchers across diverse disciplines,
from basic biology to clinical diagnostics [1]. NGS has not only enabled comprehensive
genome sequencing but also facilitated transcriptomics, epigenomics, metagenomics, and
other omics studies [2]. The advent of advanced NGS platforms, such as Illumina, Pacific
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Biosciences, and Oxford Nanopore, has transformed the field of genomics by allowing
for the parallel sequencing of millions to billions of DNA fragments [3,4]. This capability
has unlocked new opportunities for understanding genetic variation, gene expression,
epigenetic modifications, and microbial diversity. NGS has been instrumental in iden-
tifying disease-causing variants, uncovering novel drug targets, and shedding light on
complex biological phenomena, including the heterogeneity of tumors and developmen-
tal processes [3–5]. This review provides a comprehensive overview of NGS technology,
highlighting its transformative impact in various fields, including clinical genomics, cancer
research, infectious disease, surveillance, and microbiome analysis. We also discuss the
future prospects of NGS, including emerging technologies, its potential for advancing
genomics research, and its applications in the biomedical sciences.

2. Generations of Sequencing Technologies

Technologies for “reading” DNA sequences have evolved rapidly over the past two
decades [6–10]. This rapid progress has paved the way for significant breakthroughs in
the field of DNA sequencing, leading to the emergence of three generations of sequencing
technologies (Figure 1).
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Figure 1. Evolution of sequencing technologies. The development of sequencing technologies over
the past four decades can be categorized into three generations. The first generation was represented
by Sanger sequencing, providing the foundation for DNA sequencing. The second generation
introduced massively parallel sequencing with platforms such as Illumina and Ion Torrent, enabling
high-throughput sequencing. The current third generation includes PacBio and Nanopore, offering
long-read and single-molecule sequencing capabilities.

2.1. First-Generation Sequencing Technology

The first attempts at sequencing DNA and RNA involved chemical degradation or
enzymatic cleavage of the molecules to generate fragments that could be analyzed individ-
ually. Robert Holley was the first to sequence a nucleic acid molecule, Alanine tRNA, in
1964 using ribonuclease from S. cerevisiae [11]. Similarly, Walter Gilbert and Allan Maxam
developed a chemical degradation technique that allowed the sequencing of complete
bacteriophage PhiX174 [12]. However, the real breakthrough came with the introduction of
the chain termination-based sequencing method by Fredrick Sanger [13]. This technique
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used dideoxynucleotides, which terminate the chain elongation of DNA strands during
replication, and allowed for the production of sequence reads of up to a few hundred
nucleotides in length. Sanger’s method was widely adopted and revolutionized the field of
molecular biology by allowing for the rapid sequencing of DNA and RNA [12]. In 1987,
the first commercial automated sequencing machine, the Applied Biosystems ABI 370, was
launched in the United States. This machine used fluorescently labeled dideoxynucleotides
and capillary electrophoresis to automate the Sanger sequencing method, significantly
increasing the speed and accuracy of DNA sequencing [14,15]. The ABI 370 quickly became
the industry standard, and subsequent improvements in the technology led to the develop-
ment of higher-throughput sequencers capable of producing longer reads [15,16]. While
the first-generation technology has been largely superseded by newer, higher-throughput
sequencing technologies, it remains an important historical milestone in the development
of sequencing techniques. The ability to sequence DNA and RNA has revolutionized many
areas of biology and medicine and has led to numerous discoveries and advancements in
the understanding of genetics and molecular biology.

2.2. Second-Generation Sequencing Technologies

Second-generation sequencing methods have revolutionized DNA sequencing by
enabling the simultaneous sequencing of thousands to millions of DNA fragments. These
methods differ from traditional Sanger sequencing in their ability to perform parallel se-
quencing. Several widely used second-generation sequencing platforms have emerged,
one of which is Roche’s 454 sequencing method, which relies on pyrosequencing, where
the sequence is determined by detecting the release of pyrophosphate when nucleotides
are added to the DNA template. Another platform is Ion Torrent sequencing, which detects
the release of hydrogen ions during DNA synthesis to determine the sequence. The widely
used Illumina sequencing platform utilizes a sequencing-by-synthesis method based on
reversible dye terminators. Another upcoming technology, SOLiD sequencing (Sequencing
by Oligonucleotide Ligation and Detection), employs a ligation-based approach using re-
versible terminators to determine the DNA sequence. These second-generation sequencing
technologies have significantly increased the throughput and speed of DNA sequencing,
enabling a wide range of applications in genomics research and clinical diagnostics [17].
These platforms have enabled whole-genome sequencing, transcriptome analysis, and
targeted sequencing, leading to breakthroughs in genetic variation, disease research, and
personalized medicine. Many developments in the second generation of sequencing meth-
ods have been achieved over the years and are represented in Figure 2 and briefly described
in Table 1.

2.3. Third-Generation Sequencing

Third-generation sequencing technologies represent the latest advancements in DNA
sequencing, offering new approaches that overcome the limitations of previous generations.
These technologies provide long-read sequencing capabilities, enabling the sequencing
of much larger DNA fragments compared to earlier methods. Examples include PacBio
Sequencing, which uses a single-molecule, real-time (SMRT) approach with fluorescently la-
beled nucleotides, enabling long-read sequencing of DNA fragments up to tens of kilobases
in length. Another technology is Oxford Nanopore sequencing, based on nanopore tech-
nology, where a single-stranded DNA molecule passes through a nanopore, and changes
in electrical current are measured to determine the DNA sequence. Oxford Nanopore se-
quencing provides long-read lengths, portability, and real-time analysis. Third-generation
sequencing methods have been summarized in Table 1. Figure 3 describes technologies
available on NGS and the type of data generated in each type of NGS assay and their
brief application.
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Table 1. Different generations of NGS platforms.

Sr
No. Platform Use Sequencing

Technology
Amplification

Type Principle
Read

Length
(bp)

Limitations Ref.

1 454 pyrose-
quencing

Short read
sequencing

Seq by
synthesis Emulsion PCR

Detection of
pyrophosphate released

during nucleotide
incorporation.

400–1000

May contain deletion
and insertion sequencing
errors due to inefficient

determination of
homopolymer length.

[18–20]

2 Ion Torrent Short read
sequencing

Seq by
synthesis Emulsion PCR

Ion semiconductor
sequencing principle

detecting H+ ion
generated during

nucleotide incorporation.

200–400

When homopolymer
sequences are sequenced,

it may lead to loss in
signal strength.

[19–21]

3 Illumina Short read
sequencing

Seq by
synthesis Bridge PCR

Solid-phase sequencing
on immobilized surface
leveraging clonal array

formation using
proprietary reversible

terminator technology for
rapid and accurate

large-scale sequencing
using single labeled

dNTPs, which is added to
the nucleic acid chain.

36–300

In case of sample
overloading, the

sequencing may result in
overcrowding or

overlapping signals, thus
spiking the error rate up

to 1%.

[19,20,22]

4 SOLiD Short read
sequencing

Seq
by ligation Emulsion PCR

An enzymatic method of
sequencing using DNA

ligase. 8-Mer probes with
a hydroxyl group at 3′ end

and a fluorescent tag
(unique to each base A, T,
G, C) at 5′ end are used in

ligation reaction.

75

This platform displays
substitution errors and

may also under-represent
GC-rich regions. Their
short reads also limit

their wider applications.

[20,23]

5 DNA nanoball
sequencing

Short read
sequencing

Seq by
ligation

Amplification
by Nanoball

PCR

Splint oligo hybridization
with post-PCR amplicon
from libraries helps in the
formation of circles. This

circular ssDNA acts as the
DNA template to generate
a long string of DNA that
self-assembles into a tight
DNA nanoball. These are
added to the aminosilane

(positively
charged)-coated flow cell

to allow patterned binding
of the DNA nanoballs.

The fluorescently tagged
bases are incorporated

into the DNA strand, and
the release of the

fluorescent tag is captured
using imaging techniques.

50–150

Multiple PCR cycles are
needed with a more

exhaustive workflow.
This, combined with the

output of short-read
sequencing, can be a
possible limitation.

[24,25]

6
Helicos single-

molecule
sequencing

Short-read
sequencing

Seq by
synthesis

Without
Amplification

Poly-A-tailed short
100–200 bp fragmented

genomic DNA is
sequenced on poly-T

oligo-coated flow cells
using fluorescently

labeled 4 dNTPS. The
signal released upon

adding each nucleotide
is captured.

35

Highly sensitive
instrumentation required.
As the sequence length

increases, the percentage
of strands that can be

utilized decreases.

[26,27]

7 PacBio Onso
system

Short-read
sequencing

Seq by
Binding Optional PCR

Sequencing by binding
(SBB) chemistry uses

native nucleotides,
scarless incorporation

under optimized
conditions for binding and
extension (https://www.
pacb.com/technology/

sequencing-by-binding/,
accessed on 1 July 2023).

100–200
The higher cost

compared to other
sequencing platforms

https://www.pacb.com/technology/sequencing-by-binding/
https://www.pacb.com/technology/sequencing-by-binding/
https://www.pacb.com/technology/sequencing-by-binding/


Biology 2023, 12, 997 5 of 25

Table 1. Cont.

Sr
No. Platform Use Sequencing

Technology
Amplification

Type Principle
Read

Length
(bp)

Limitations Ref.

8

PacBio Single-
molecule
real-time

sequencing
(SMRT)

technology

Long-read
sequencing

Seq by
synthesis Without PCR

The SMRT sequencing
employs SMRT Cell,

housing numerous small
wells known as zero-mode

waveguides (ZMWs).
Individual DNA

molecules are
immobilized within these
wells, emitting light as the
polymerase incorporates
each nucleotide, allowing
real-time measurement of
nucleotide incorporation

average
10,000–
25,000

The higher cost
compared to other

sequencing platforms.
[28,29]

9
Nanopore

DNA
sequencing

Long-read
sequencing

Sequence
detection
through
electrical

impedance

Without PCR

The method relies on the
linearization of DNA or

RNA molecules and their
capability to move

through a biological pore
called “nanopores”, which

are eight nanometers
wide. Electrophoretic

mobility allows the
passage of linear nucleic

acid strand, which in turn
is capable of generating a

current signal.

average
10,000–
30,000

The error rate can spike
up to 15%, especially
with low-complexity

sequences. Compared to
short-read sequencers, it

has a lower
read accuracy.

[5,19,30]
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We are very thankful to the commentator for pointing out the issues in the review
article by Satam et al. [1]. As noted by the commentator, there were a few discrepancies
related to the information about the PacBio system in the review article by Satam et al., as
discussed below.

The commentator highlighted the point in the original article regarding the higher
error rate of long-read sequencing compared to short-read sequencing. We presented
this as a general statement for long-read sequencing technologies, without specifically
mentioning PacBio. We acknowledge the updated information and the references cited
by the commentator. After considering the references cited by the commentator and the
study from the Association of Biomolecular Resource Facilities (ABRF), we agree with the
updated information provided by the commentator that PacBio CCS has the lowest error
rate among all sequencing technologies.

The commentator identified an error in Figure 2 and Table 1 of the original article. We
appreciate the raised comment and acknowledge that it was an unintentional typographical
mistake. In the subsequent paragraph of the original article, where we compare short-read
and long-read sequencing, we used the term ‘PCR-Free’. We apologize for the typographical
error in Figure 2 of the article, which has now been rectified (see the corrected figure below).
Furthermore, we have also corrected this information in Table 1 (see below).
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ical platforms, data analysis, and applications. WGS, whole-genome sequencing; WES, whole-exome
sequencing; Seq, sequencing; ITS, internal transcribed spacer; ChIP, chromatin immunoprecipitation;
ATAC, assay for transposase-accessible chromatin; AMR, anti-microbial resistance.

Long-Read and Short-Read Sequencing

The basic principle for short-read sequencing involves sequencing by synthesis based
on enrichment through hybridization, amplification, or fragmentation. Whereas long-
read sequencing works on sequence detection either by synthesis or by electrical voltage
change/impedance, generating the current as a single base is passed through the biological
membrane pore. Long-read sequencing can generate reads up to 25–30 kb, whereas short-
read sequencing can generate reads around 600–700 bp. Furthermore, the amplification
bias is eliminated in long-read sequencing as opposed to short-read sequencing. As the
library preparation is PCR-free, the base modification such as DNA methylation can be
easily detected by long-read sequencing. The introduction of high-throughput sequenc-
ing platforms has significantly reduced error rates and notably improved the accuracy of
long-read sequencing technologies [29,31]. Short-read sequencing is useful for determin-
ing the abundance of specific sequences, profiling transcript expression, and identifying
variants. However, long-read sequencing technologies excel in providing comprehensive
genome coverage, enabling researchers to identify complex structural variants such as large
insertions, deletions, inversions, duplications, and more [8,29,31].

3. Next-Generation Sequencing-Based Omics

Understanding complex human diseases requires data integration from multiple omics
techniques such as genomics, transcriptomics, epigenomics, and proteomics. Here, we
briefly describe various omics technologies that are implemented on the NGS platform:

3.1. Genomics

Genomics studies using NGS profoundly analyze DNA using various approaches
such as whole-genome sequencing, whole-exome sequencing, and targeted sequencing.
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3.1.1. Whole-Genome Sequencing

Whole-genome sequencing (WGS) is a powerful and comprehensive genomic analysis
technique that involves determining the complete DNA sequence of an individual’s genome.
It provides a detailed blueprint of an individual’s genetic makeup, encompassing all the
genes, regulatory regions, and non-coding elements present in their genome. It finds its
application mainly in discovery science, such as plant and animal research, cancer research,
rare genetic diseases, patients with complex disease symptoms, population genetics, and
novel genome assembly of eukaryotes and prokaryotes [32]. By sequencing all the DNA in
an organism’s genome, WGS enables the identification of genetic variations, ranging from
single-nucleotide polymorphisms (SNPs) to larger structural changes such as insertions,
deletions, and rearrangements. This wealth of information obtained through WGS offers
a multitude of applications in various fields [33]. WGS has two types of sequencing
approaches on the basis of genome size viz. (1) large whole-genome sequencing deciphering
larger genomes of >5 Mb such as eukaryotes, and (2) small whole-genome sequencing
deciphering smaller genomes of <5 Mb mainly of prokaryotes. Short-read sequencing
is preferred for mutation calling, while long-read sequencing is preferred for genome
assemblies. Combining short and long-read sequencing for sequencing novel genomes has
been successfully applied for accurate genome assembly without a reference sequence.

3.1.2. Whole-Exome Sequencing

Whole-exome sequencing (WES) is a sequencing approach that focuses on capturing
and sequencing the protein-coding regions of the genome, known as the exome. The
exome represents approximately 1–2% of the entire genome but contains the majority of
known disease-causing variants. By sequencing the exome, WES enables the identification
of genetic variations, including single-nucleotide variants (SNVs), insertions, deletions,
and copy number variations (CNVs), within protein-coding genes [34,35]. WES is a cost-
effective alternative to WGS for rare clinical diseases with clusters of symptoms, as well as
in identifying variants for population and cancer genetics [36]. WES involves the enrich-
ment of exonic regions using hybrid capture or target-specific amplification techniques,
followed by high-throughput sequencing. Various exome capture assays from NimbleGen,
Agilent, Illumina, Twist, and IDT are available that are compatible with the Illumina NGS
platform [37]. The bioinformatic approach used for WES data analysis is the same as that
of WGS since WES is a part of WGS.

3.1.3. Targeted Sequencing

Targeted sequencing, as the name suggests, has less exploratory power than WGS
or WES as it targets specific regions of the gene and is able to pick up various types of
genetic variations from SNVs to small gene deletions, duplications, insertions, or gene
rearrangements associated with disease phenotypes. However, advantages include cost-
effectiveness and manageable data for clinicians, making clinical decisions easier with more
specific disease-relevant information. It can give much deeper coverage up to 5000× for
rare alleles in genetic diseases, as well as for low-abundant evolving mutant clones arising
as a result of tumor heterogeneity or disease evolution in cancer [38]. The candidate gene
approach or commercially available targeted panels is the result of WGS/WES projects
carried out at the population scale. The germline, as well as somatic variants, can be tested
using targeted NGS panels, few examples of which are listed in Table 2. Targeted panels
work on a simple approach of enrichment by amplification using pools of region-specific
oligonucleotide primers. Specific size libraries that are produced are then sequenced and
analyzed bioinformatically [39].
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Table 2. Examples of targeted panels available in research and diagnostic settings.

Disease Condition Available Panel Type of Inheritance Specimen Type

Inherited cardiovascular defects Cardiovascular research panel Germline Blood

Arrhythmias and cardiomyopathies Arrhythmias and cardiomyopathy
research panel Germline Blood

Sensitivity to pharmacological drugs Pharmacogenomics research panel
(PGex Seq panel) Germline Blood

Antimicrobial treatment efficacy testing Antimicrobial resistance
research panel Microbial gene testing Bacterial culture

Infertility conditions Infertility research panel Germline Blood
Homologous recombination
defect analysis HRR gene panel Somatic Tumor tissue

myeloid cancers Myeloid cancer panel Somatic Blood
HIV speciation and drug resistance HIV-Xgene panel Pathogen detection HIV-positive plasma
Antimicrobial resistance in MTB TB research panel Pathogen detection MTB-positive specimen
Inborn errors of metabolism Error of metabolism research panel Germline DBS/blood

Hereditary cancers
BRACA and extended breast and
ovarian cancer research panel,
inherited cancer research panel

Germline Blood

3.2. Transcriptomics

Next-generation sequencing (NGS) has had a transformative impact on transcriptomics,
revolutionizing our ability to study the transcriptome—the complete set of RNA molecules
in an organism or specific cell population. NGS technologies offer high-throughput and
cost-effective methods for profiling and analyzing RNA molecules, allowing researchers to
gain deep insights into gene expression, alternative splicing, non-coding RNA regulation,
and various biological processes and diseases [40–43]. Here are some key roles of NGS in
transcriptomics:

(a) mRNA Sequencing (RNA-Seq): RNA-seq is a widely used NGS application in tran-
scriptomics. It involves the sequencing and quantification of mRNA molecules,
providing a comprehensive snapshot of the expressed genes in a biological sample. By
generating millions of short sequencing reads, NGS allows researchers to identify and
quantify gene expression levels accurately. RNA-seq data can be analyzed to detect
differential gene expression between different conditions, discover novel transcripts,
assess alternative splicing events, and study gene expression dynamics over time or
across different tissues or cell types [44,45].

(b) Alternative Splicing Analysis: Alternative splicing, a process in which a single gene
can generate multiple mRNA isoforms, significantly contributes to transcriptome
complexity. NGS provides the ability to study alternative splicing patterns com-
prehensively. By aligning RNA-seq reads to the reference genome, researchers can
identify splice junctions and detect alternative splicing events. This information allows
for the quantification and characterization of transcript isoforms, providing insights
into isoform diversity, tissue-specific expression, and the functional implications of
alternative splicing [46].

(c) Long Non-Coding RNA (lncRNA) and Small-RNA Analysis: NGS facilitates the
study of non-coding RNAs, which play critical roles in gene regulation. Techniques
such as small-RNA sequencing and long non-coding RNA sequencing enable the
identification and characterization of various classes of non-coding RNAs. Small-RNA
sequencing allows the profiling of small regulatory RNAs, including microRNAs,
piRNAs, and snoRNAs, providing insights into their roles in post-transcriptional
gene regulation. Long non-coding RNA sequencing enables the identification and
analysis of long non-coding RNA transcripts, which have been implicated in diverse
biological processes and diseases [47–49]. Long RNA-seq reads can inform about
the connectivity between multiple exons and reveal sequence variations (SNPs) in
the transcribed region [50]. Small-RNA sequencing is a non-targeted approach that
allows the detection of novel miRNA and other small RNAs [51]. The transcriptome
with ChIP-seq studies in cancer biology has helped to understand the emerging role
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of ncRNAs such as sncRNAs and lncRNA in gene regulation mechanisms during
carcinogenesis/cancer progression [52–54].

(d) Transcriptome Assembly and Annotation: NGS data can be utilized to reconstruct
and annotate the transcriptome of an organism. By aligning RNA-seq reads to a
reference genome or using de novo assembly approaches, researchers can identify
novel transcripts, splice variants, untranslated regions, and other transcript features.
This information enhances our understanding of the transcriptome’s complexity and
improves the annotation of reference genomes, enabling the discovery of previously
unknown genes and regulatory elements [55].

(e) Single-Cell Transcriptomics: NGS has facilitated the emergence of single-cell tran-
scriptomics, enabling the study of gene expression profiles at the individual cell level.
Single-cell RNA-seq (scRNA-Seq) technologies allow the profiling of transcriptomes
from individual cells, providing insights into cellular heterogeneity, cell type iden-
tification, cell lineage analysis, and gene expression dynamics in complex tissues or
developmental processes [56,57].

(f) Integrative Transcriptomics: NGS data from transcriptomics can be integrated with
other omics data, such as genomics, epigenomics, and proteomics, to gain a com-
prehensive understanding of gene regulation and biological processes. Integrative
approaches provide a system-level view of molecular interactions and enable the
identification of key regulatory mechanisms underlying cellular processes and dis-
eases [56].

3.3. Epigenomics

Epigenomics refers to the study of epigenetic modifications, which are heritable changes
in gene expression patterns that do not involve alterations in the DNA sequence [58,59]. The
most common types of epigenetic modifications studied are DNA methylation [60], histone
modification, and RNA methylation (epi-transcriptome). These chemical tags in turn alter
DNA accessibility, chromatin remodeling, and nucleosome positioning [61]. These modi-
fications are influenced by environmental factors such as nutrients, pollutants, toxicants,
and inflammation [62,63]. The knowledge and data generated through whole-genome-
wide sequencing in humans, plants, and animals [64] have helped scientists to gain better
insights into these epigenetic alterations, especially DNA methylation and hydroxymethy-
lation. Epigenetic alterations have attracted researchers’ and clinicians’ interest in complex
disorders such as behavioral disorders, memory, cancer, autoimmune disease, addiction,
neurodegenerative, and psychological disorders [65]. There are various platforms and
assays developed to study epigenetic modifications, which have been very well described
elsewhere [66]. NGS has been utilized for investigating epigenomics, as discussed below:

(a) DNA Methylation Profiling: DNA methylation is a crucial epigenetic modification
that plays a critical role in gene regulation and cellular processes. NGS enables
genome-wide profiling of DNA methylation patterns at single-nucleotide resolu-
tion [67]. Several strategies, such as whole-genome bisulfite sequencing (WGBS)
and reduced representation bisulfite sequencing (RRBS), leverage NGS to identify
methylated cytosines [68]. However, RRBS is based on enriching methylated ge-
nomic regions using restriction enzymatic digestion [66,69]. These methods allow
researchers to study DNA methylation dynamics, uncover differentially methylated
regions (DMRs) associated with diseases, and understand the impact of methylation
on gene expression.

(b) Chromatin Accessibility Mapping: NGS-based techniques, such as assay for transposase-
accessible chromatin using sequencing (ATAC-seq) and DNase-seq, enable the genome-
wide profiling of chromatin accessibility. These methods identify regions of the
genome that are accessible to DNA-binding proteins and transcription factors, provid-
ing insights into gene regulatory elements, enhancers, and promoters. By combining
chromatin accessibility data with other epigenetic modifications, gene expression data,



Biology 2023, 12, 997 10 of 25

and transcription factor binding data, researchers can unravel the functional elements
within the genome [70,71].

(c) Histone Modification Analysis: Histone modifications, including acetylation, methyla-
tion, phosphorylation, and more, are critical epigenetic marks that regulate chromatin
structure and gene expression. Chromatin immunoprecipitation sequencing (ChIP-
seq) enables genome-wide profiling of histone modifications by antibody-based pull
down of the protein followed by enrichment of DNA bound to the protein and se-
quencing. This technique finds application in many different areas of research, such
as transcription factor (TF) binding site identification, histone modification analysis
of the DNA, and DNA methylation. For studying histone modifications, antibodies
targeted to histone modifications are used to pull down the DNA and sequenced using
the NGS technique. The resulting reads are aligned to the reference genome, enabling
the identification of histone modification patterns at specific genomic regions. ChIP-
Seq can provide insights into the epigenetic regulation of gene expression, chromatin
states, and the identification of enhancers and other regulatory elements [72–75].

(d) Chromatin Conformation Analysis: NGS-based techniques, such as Hi-C and 4C-seq,
allow the investigation of 3D chromatin organization and interactions. These methods
capture long-range chromatin interactions and enable the construction of chromatin
interaction maps [76,77]. By integrating 3D chromatin conformation data with epi-
genetic modifications, gene expression data, and functional annotations, researchers
can gain insights into the spatial organization of the genome and understand how it
influences gene regulation.

(e) In addition to these standalone approaches, NGS data from epigenomics can be inte-
grated with transcriptomics data to unravel the relationship between epigenetic modi-
fications and gene expression. Integration of DNA methylation profiles with RNA-seq
data can identify differentially methylated regions (DMRs) associated with gene ex-
pression changes. Integration of histone modification and chromatin accessibility data
with RNA-seq allows the identification of regulatory elements associated with specific
gene expression patterns and the exploration of epigenetic regulatory mechanisms.

3.4. Metagenomics

Metagenomics deals with direct genetic analysis of the prokaryotic genome including
bacteria, fungi, and viruses contained in a sample [78] either by targeted approach or
adaptor ligation PCR approach for shotgun sequencing in a culture-independent manner.
The hypervariable region in 16S or 18S ribosomal RNA genes of bacteria and fungi is
used in the targeted approach. A blend of conserved and hypervariable regions helps in
the identification of each bacterial species from the sample. Similarly, for fungal species
identification, ITS1 and ITS2 regions spanning the 5.8S rRNA gene of the fungal genome
are selected for amplification [79]. For viral genome sequencing, reads generated from
NGS (shotgun) are again the culture-independent method for studying viral diversity,
abundance, and functional potential of viruses in the environment. All filtered reads are
mapped with the human reference sequence, and remaining, unmapped reads are mapped
against the NCBI RefSeq viral genomic database (Table 3) [80]. The targeted viral and
bacterial genome panels are also available, e.g., ChapterDx for HR HPV and microbial
infection detection, the HIV drug resistance panel, the AMR panel, the gastrointestinal
disorder panel, etc.

Based on the nucleotide sequence similarities, pre-processed sequences are clustered
at 97% similarity into operational taxonomic units (OTUs). OTUs are compared with
the database to identify the microorganisms [81]. Several analysis pipelines are used for
the analysis of 16S amplicon reads (Table 3) [82]. For shotgun metagenomics samples,
taxonomic and functional profiles can be obtained by different approaches, as elaborated in
Table 3 [83–89]. Microbiome sequencing can identify the full spectrum of microbial species
present in the sample. The results are highly quantitative, and one can study the bacterial
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communities over a specific interval of conditions. The NGS platform can also generate
reads for low-abundance species in a sample.

4. Bioinformatic Approaches for NGS Data Analysis

NGS generates vast amounts of DNA or RNA sequences, necessitating computational
methods to handle, analyze, and interpret these data. Raw sequencing data produced
by NGS instruments need to be processed, analyzed, and interpreted to derive biological
insights. This is where bioinformatic approaches come into play. These approaches encom-
pass a wide range of computational methods, algorithms, and tools that handle prepro-
cessing, alignment, variant calling, gene expression quantification, differential expression
analysis, and other specialized analyses. Once processed, various computational tech-
niques, such as de novo assembly, reference-based mapping, and transcriptome analysis,
are employed to extract meaningful biological information. Furthermore, advanced bioin-
formatic tools facilitate the identification of genetic variations, including single-nucleotide
polymorphisms (SNPs), copy number variations (CNVs), and structural variants. Integra-
tive analyses, combining NGS data with other genomic and functional data sources, enable
the exploration of gene expression and regulatory networks. The various bioinformatics
tools used in NGS analysis are listed in Table 3.

Table 3. Bioinformatic steps and tools used for NGS data analysis.

Analysis Commonly Used Tools

Common Analysis
Quality check of sequences FastQC [90], FASTX-toolkit [91], MultiQC [92]
Trimming of adaptors and low-quality bases Trimmomatic [93], Cutadapt [94], fastp [95]
Alignment of sequence reads to reference genome BWA [96], Bowtie [97], dragMAP [98]
Reports visualization MultiQC [92]

Whole-Genome Sequencing/Whole-Exome Sequencing/Targeted Panel
Removal of duplicate reads Picard [99], Sambamba [100]

Variant calling (single-nucleotide polymorphisms and indels) GATK [101], freeBayes [102], Platypus [103], VarScan [104],
DeepVariant [105], Illumina Dragen [106]

Filter and merge variants bcftools [107]

Variant annotation ANNOVAR [108], ensemblVEP [109], snpEff [110],
NIRVANA [111]

Structural variant calling DELLY [112], Lumpy [113], Manta [114], GRIDDS [115],
Wham [116], Pindel [117]

Copy number variation (CNV) calling
CNVnator [118], GATK gCNV [119], cn.MOPS [120],
cnvCapSeq(targeted sequencing) [121], ExomeDepth (CNVs
from Exome) [122]

Transcriptomics

Alignment of reads to reference Splice-aware aligner such as TopHat2 [123], HISAT2 [124], and
STAR [125]

Transcript quantification featureCounts [126], HTSeq-count [127], Salmon [128],
Kallisto [129]

Differential gene expression analysis
enrichment of gene categories

DESeq2 [130], EdgeR [131], DAVID [132], clusterProfiler [133],
Enrichr [134]

Epigenomics-Methyl Seq
Sequence aligners Bwameth [135], BS-Seeker2 [136], Bismark [137]
Methylation level quantification MethylDackel *
Differential methylation Metilene [138], BSsmooth [139], methylKit [140]

Epigenomics-ChIP seq
Removal of PCR duplicates Samtools [107]
Peak calling MACS2 [141], SICER2 [142], SPP [143]
Peak filtering Bedtools [144]
Enrichment quality control ChipQC [145], Phantompeakqualtools [146]
Enrichment comparison diffBind [147], MAnorm [148], MMDiff [149]
Motif analysis MemeCHiP [150], Homer [151], RSAT [152]
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Table 3. Cont.

Analysis Commonly Used Tools

16s rRNA seq
16S rRNAseq analysis pipelines QIIME2 [82], mothur [153], USEARCH [154]
Ribosomal RNA databases Greengenes [155], Silva [156], RDP [157]

Shotgun Metagenomics
Taxonomic classification MetaPhlAn4 [158], Kaiju [159], Kraken [160]
Assembly of metagenomic reads metaSPAdes [86], metaIDBA [87]
Protein databases for taxonomic classification NCBI non-redundant protein database [83]
Gene annotation Prokka [88], MetaGeneMark [89]
Databases for functional annotation of genes COG [161], KEGG [84], GO [85]

Footnote: ANNOVAR—ANNOtate VARiation; BWA—Burrows Wheeler Aligner; cn.mops Copy Number Es-
timation by a Mixture Of PoissonS; COG—Clusters of Orthologous Groups of Proteins; DAVID—A Database
for Annotation, Visualization and Integrated Discovery; Ensembl VEP—Ensembl Variant Effect Predictor;
Fastp—Fsatq Preprocessor; GATK—Genome Analysis Tool Kit; GO—Gene Ontology; HISAT2—Hierarchical
Indexing for Spliced Alignment of Transcripts; HOMER—Hypergeometric Optimization of Motif EnRich-
ment; Htseq-count—High-Throughput Sequence Analysis in Python; KEGG: Kyoto Encyclopedia of Genes
and Genomes; NCBI—National Center for Biotechnology Information; MACS: Model-Based Analysis for ChIP-
Seq; MEME—Multiple EM for Motif Elicitation; Meta-IDBA—Meta-Iterative De Bruijn Graph De Novo Short-Read
Assembler; MetaPhlAn—Metagenomic Phylogenetic Analysis; metaSPAdes—meta St Petersburg Genome Assem-
bler; QIIME—Quantitative Insights Into Microbial Ecology; RDP—Ribosomal Database Project; RSAT—Regulatory
Sequence Analysis tools; SICER—Spatial Clustering Approach for the Identification of ChIP-Enriched regions;
SPP—The Signaling Pathways Project; STAR—Spliced Transcripts Alignment to a Reference. * Available at:
https://github.com/dpryan79/MethylDackel/ (accessed on 1 June 2023). Bold represents the categories of
analysis and commonly used bioinformatics tools used for NGS data analysis.

5. NGS Applications in Research and Diagnostics

NGS has revolutionized the field of scientific research and clinical genomics due
to high-throughput multiplexing. This power of NGS in translation medicine lies not
only in its advanced multiplexing efficiency but also in the equally smart bioinformatic
tools used for data curation followed by various reference databases that help researchers,
medical practitioners, and drug designers to understand the genetic basis of the disease.
Different population genome sequencing projects such as 1000 G, ExAC, ESP6500, UK
100 K, Indigenome, and gnomAD generated vast amounts of data on NGS [162]. Among
the reference population databases, gnomAD is the largest and most widely used database
generated from harmonized sequencing data incorporating exome and genome sequencing
data from 140,000 humans. This has been widely used as a resource for estimating allele
frequency in rare diseases, disease gene discovery, and the biological effect of variation [163].
This has led to the creation of knowledge bases and in turn large and small sequencing
panels for major applications in clinical research and diagnostics [164]. The large gene
panels find their major application in clinical research mainly in cancer genetics.

5.1. Role of NGS in Research
5.1.1. Microbiome Research

Given the ubiquitous nature of microbes, their symbiotic, pathogenic, and commensal
characteristics are of importance to humans by forming a highly functioning ecosystem. The
microbiome community became an obligatory factor in our survival through evolution [165].
However, a close monitoring and comprehensive understanding of the host–microbiome
and microbiome–intercommunity interactions are vital to healthy survival. The approaches
include pathogen surveillance, functional dysbiosis, and therapeutic potential. Metage-
nomic studies have linked the gut microbiome to disorders affecting mental health [166],
autoimmune diseases (rheumatoid arthritis) [167], and metabolic disorders (diabetes and
obesity) [168], thus instrumental in evaluating the functional potential of the microbiome.
This opens doors for more therapeutic approaches and options. Designing targeted panels
to pick up mutations (aiding in antibiotic resistance tracking) or identifying the pathogenic
genes followed by sequencing can help in detecting pathogens with known antimicrobial
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resistance. Research is also underway for the pharmacomicrobiomics of individuals requir-
ing drug treatment. This would aid in identifying the effect of drugs on an individual’s
microbiome and drug disposition by the microbiome.

5.1.2. Human Disease Research

The focus of NGS-based research is now extended from genomic research to the study
of transcriptome, epi-transcriptome, and epigenome. Human genome-based research
through WGS and WES has provided novel insights into the biological processes and
has found application in wellness research; agriculture and food research; genome-wide
association research studies uncovering the wide range of population genetic variants; their
genetic linkage and molecular basis to various diseases, including cancer; and the study
of new pathogenic/emerging variants such as SARS-CoV-2 variants in human diseases.
The redefinition of the mutational landscapes in tumors has resulted in translating this
information into clinical research through the ever-growing list of targeted large gene
panels such as the 261 gene panel, the 400 gene panel, the TSO 500 panel from Illumina,
IDT, Agilent, and Thermo Fisher. These panels assess not only SNVs but also clinically
relevant CNVs and RNA fusion transcripts, TMB, and microsatellite instability (MSI) for
lung cancer, breast cancer, colorectal cancer, and even for difficult cancers such as ovarian,
pancreatic, renal, urothelial cancers, etc.

RNA-seq finds its application mainly in research for analyzing pathogen transcrip-
tomic signatures [169], metastatic biomarkers, therapeutic resistance, immune microenvi-
ronment, immunotherapy, and neoantigen research in cancer [170,171]. With NGS, it is now
possible to study single-cell behavior with respect to its differentiation, de-differentiation,
proliferation, and tumorigenesis in cancer using single-cell RNA-sequencing strategies
such as Smart-seq2, MATQ-seq, SUPeR-seq, Drop-seq, Seq-Well, Chromium, DroNC-seq,
STRT-seq, etc. [172]. The recent new development of the RiboSeq technique can plot poten-
tial ongoing events of translation in the cytosol, which is useful in identifying potentially
functional micro-peptides. This is how thousands of sORFs (small open-reading frames)
were discovered in lncRNA. Thus, with transcriptomics, Ribo-seq, and MS proteomics, the
bifunctional potential of RNA molecules is identified [173,174].

The role of epigenomics in gene regulation, the maintenance of tissue-specific expres-
sion, and developmental processes is evident from X chromosome inactivation, embryonic
development, genomic imprinting, epigenetic reprogramming, cell identity establishment,
and lineage specification studies. Epigenetic signatures are important biomarkers that have
promise not only in cancer, malignant transformation, and metastasis but also for their
clinical applicability in other disease conditions such as diabetes, neurological conditions,
infectious diseases, and immune disorders [175,176]. The reversible nature of epigenetic
changes makes them promising candidates for precision medicine in cancer and other condi-
tions [164,176]. Pharmacoepigenomics is an emerging research area, where the relationship
between variable drug response and epigenetic status is being studied [59]. Epi-drugs have
been developed over the last 40 years, and few are in clinical practice, whereas some are
in clinical trials [177]. Non-coding RNAs (ncRNAs) are gene expression regulators apart
from epigenetic modifications that are being explored as drug targets. Numerous lncRNAs
are subsequently identified and found to be aberrantly expressed in various tumors [58].
Increasing studies have shown miRNAs as biomarkers of multiple cancers as their abnor-
mal quantity has been correlated with the stage of pathology and prognosis [178]. The
applications of miRNA analog or anti-miRNAs have shown promising outcomes in vitro
and in vivo cancer studies, suggesting that miRNA-based drugs are emerging as a novel
strategy for cancer therapy [179]. Apart from cancer, multiple FDA-approved drugs exist
for DMD, SMA, familial hypercholesterolemia, CMV retinitis, etc. [178].

5.2. NGS in Diagnostics

A decisive approach is important when selecting an NGS assay. Type of variant,
disease symptoms, and probable genetic associations are important aspects when selecting
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NGS-based tests in clinical decision making, as per recommendations by the National
Comprehensive Cancer Network (NCCN), the College of American Pathologists (CAP),
the American Society of Clinical Oncology (ASCO), the Association of Molecular Pathology
(AMP), the American College of Medical Genetics (ACMG), and the European Society of
Medical Oncology (ESMO).

5.2.1. Infectious Diseases

The identification of the exact etiological agent in microbial infections is important
for precision medicine, which has driven the approach of syndromic testing/multiple
pathogen testing assays such as BioFire or multiplex PCRs. However, with the limitations
of multiplexing, NGS panels are being developed that can detect any pathogen using
a shotgun approach or a targeted approach (16S) from various diseased specimens or
clinical isolates. These panels can not only pick up causative pathogens but can be used
to identify drug-resistant mutations such as antimicrobial drug-resistant mutations and
antiviral drug-resistant mutations [180]. The useful data generated through NGS on
microbial identification and drug resistance genotyping, e.g., in MTB, HIV, and SARS-
CoV-2 [181], have proven important for disease surveillance, disease containment, public
health epidemiological studies, policy making, and rapid therapeutic interventions, as
evident during the COVID-19 outbreak [182]. However, with the need for fast diagnosis,
NGS, in its current form for infectious pathogen detection, cannot replace current standard
point-of-care testing such as PCR, multiplex BioFire panel testing, or multiplex QPCR
commercial kits.

5.2.2. Inherited Genetic Diseases

The association of multiple genes in multifactorial disorders such as diabetes, hy-
percholesterolemia, infertility, etc., has been discovered in the rapidly emerging field of
genomics. For example, the classical approach to comprehending the genes participating
in infertility, gametogenesis, the hormonal cycle, fecundation, and embryo development
would have been difficult and time-consuming. Targeted NGS panels have evolved as
a result of WGS, and WES has enabled the simultaneous evaluation of multiple genes
and their variants explaining the complexity of various disorders, including infertility,
inherited genetic diseases, and reproductive genome testing, including NIPT (non-invasive
prenatal testing), PGS/PGD (preimplantation genetic disease testing), and pediatric disor-
ders such as developmental delay disorders, metabolic syndromes [183]. This has enabled
disease treatment through personalized genome testing for the betterment of human health,
preventive testing, and disease management.

5.2.3. HLA Typing

NGS-based HLA typing using WGS or targeted panels over conventional HLA typing
methods for organ transplant or HSCT provides more unambiguous, high-throughput,
high-resolution typing results from a single platform. This approach provides complete
information on all the HLA loci involved in (1) the etiopathogenesis of immune disorders
such as coeliac disease, psoriasis, rheumatoid arthritis, type I diabetes, SLE, lung diseases
(e.g., asthma or sarcoidosis) [184], infectious disease predispositions (e.g., HIV, hepatitis,
leprosy, tuberculosis), and other conditions such as malignancies and neuropathies [185])
generating population/ancestry-based database.

Epigenetics study through methylation profiling was in fact first studied using the
HLA gene, which has its epigenetic regulators located in the non-coding region such as
enhancers, promoters, and UTR regions that regulate HLA gene expression. Bioinformati-
cally, the sequence data obtained are analyzed using commercial HLA-specific software
such as NGSengine or exome-data-based software such as OptiType [186], Polysolver [187],
xHLA [188], and HLAminer [189] to determine the HLA types [190].
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5.2.4. Cancer

The comprehensive human genome sequencing project, WGS and WES, has identified
cancer as the disease of the genome and is a multifactorial disease with non-mendelian
(Somatic) origin in the majority of cases and mendelian origin in inherited cancers. Through
the efforts of TCGA (The Cancer Genome Atlas) and ICGC (International Cancer Genome
Consortium), the understanding of cancer and the comprehensive gene alteration data in
protein-coding regions for all types of human cancers are now readily available [191].

Different enterprises, such as FoundationOne by Foundation Medicine (Cambridge,
MA, USA), Oncomine by Thermo Fisher (Waltham, MA, USA), CANCERPLEX by KEW
(Cambridge, MA, USA), MSK-IMPACT by the Memorial Sloan Kettering Cancer Center
(New York, NY, USA), OmniSeq Advance by the Roswell Park Cancer Institute (Buffalo,
NY, USA), the CC Onco Panel by Sysmex (Kobe, Japan), and the Todai Onco Panel by
Riken Genesis (Tokyo, Japan) have come up with multigene panels using TCGA and ICGC
data for different NGS platforms that are now frequently used in cancer prognosis and
therapeutics [191]. Figure 4 summarizes the various data integration methods for cancer
diagnosis, prognosis, and therapeutics [192]. Though all alterations picked up in NGS may
not find immediate application in translation medicine, they help discover the different
pathways operating in cancer pathogenesis and build on the cancer genomics database.
Lung cancer biomarkers have been developed for almost over a decade for the development
of a commercial NGS panel of 15–21 genes for precision oncology in lung cancer, picking
up all types of structural variants (SVs) on a single platform [193,194]. This landmark study
of precision oncology in lung cancer opened the doors for various solid tumors such as
CRC, breast, ovarian, endometrial, pancreatic, and even liquid tumors such as myeloid and
lymphoid malignancies to use NGS panels effectively with limited sample requirement,
infrastructure, and different technical and analytical expertise [98]. Thus, a comprehensive
gene testing approach in cancer provides maximum treatment efficacy and reduces the
window period of disease progression in a cancer patient, resulting in improved QOL
(quality of life), PFS (progression-free survival), and OS (overall survival).

One important aspect of somatic mutation testing in cancer is tumor heterogeneity. It
needs to be clearly and carefully dealt with by setting the variant calling cutoff thresholds
to avoid false-positive or false-negative variant calling and reporting [195]. Being the
most sensitive method of mutation detection, evolving mutant clones, the allelic burden
of mutation and thus the disease progression can be determined through NGS. Liquid
biopsy testing in cancer has become a very handy tool in tracking disease progression
and treatment monitoring in clinical oncology using the circulating tumor DNA in a
metastatic setting [196]. NGS plays a crucial role in identifying biomarkers associated with
hereditary/germline cancers. For example, in the case of hereditary breast and ovarian
cancer syndrome (HBOC), the understanding of its genetic basis has evolved beyond the
BRCA1 and BRCA2 mutations. The inclusion of other genes involved in the homologous
recombination repair (HRR) pathway, known as BRACAness genes, has reshaped our
understanding of HBOC. These additional genes include CDH1, PTEN, TP53, STK11,
PALB2, ATM, CHEK2, MUTYH, BARD1, MRE11A, NBN, RAD50, RAD51C, RAD51D,
and NF1, in addition to BRCA1 and BRCA2. NGS has facilitated the identification and
characterization of these extended sets of genes associated with HBOC, expanding our
knowledge of hereditary cancer predisposition [197].

5.3. NGS in Forensics

Ever since 1984, when Sir Alec Jeffreys first proposed the application of DNA profiling
to distinguish between different samples at a crime site, DNA analysis has emerged as a
prime investigative tool in forensic science [198]. This field is now being dominated by
NGS, keeping behind the old methods of DNA fingerprinting such as restriction fragment
length polymorphism (RFLP), mitochondrial DNA, variable number of tandem repeat
(VNTR) profiling, and short tandem repeat (STR) typing to solve an array of criminal
mysteries [199]. NGS has gained rapid importance in this domain due to its ability to
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deliver highly accurate, reproducible, and results of the highest sensitivity from highly
contaminated and degraded sample qualities received in forensic labs [200]. NGS is being
applied to solve different categories of criminal cases: mtDNA for the investigation of
maternal lineage [201], Y chromosome STR analysis for the identification of male DNA
in a contaminated sample [202], animal and plant DNA analysis to identify important
clues in poisoning cases [203], ancestry tracing [204], predicting phenotypes based on the
genes [205], epigenetic analysis to identify the age of the donor DNA [206], and microRNA
analysis for identifying body fluids and post-mortem interval [207]. The application of
NGS in biodefense and bioterrorism involving the detection of microbial signatures at
crime sites is another discipline gaining rapid attraction [208,209]. The major providers
of NGS technology dominating the forensic domain are Illumina’s MiSeq FGx, Thermo
Fisher’s Ion Torrent PGM, and Ion S5 [210,211]
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6. Future Prospects and Conclusions

The future scope of NGS holds tremendous potential for advancements and applica-
tions in various fields. The progress in bioinformatics, robotics, liquid handling, and nucleic
acid preparation will revolutionize NGS sequencing methods, making them faster and more
precise. These forthcoming sequencing platforms will necessitate smaller amounts of input
DNA and reagents, scaling down to zeptoliters and even a few molecules. Additionally,
they will become increasingly portable, enabling their utilization in diagnostic applications
across various fields such as medical, agricultural, ecological, and other field-based settings.
Taken together, NGS holds immense potential for transformative advancements across
multiple domains. NGS has already revolutionized fields such as clinical diagnostics, can-
cer genomics, and microbial genomics, providing unprecedented insights into the genetic
underpinnings of diseases and driving personalized medicine. As technology progresses,
NGS is expected to play a pivotal role in areas such as single-cell genomics, long-read
sequencing, epigenomics, and multi-omics integration, enabling a deeper understanding
of cellular processes, disease mechanisms, and personalized treatment strategies. The
development of real-time sequencing and point-of-care applications will further extend the
reach of NGS, empowering rapid diagnostics and monitoring in various settings. Addi-
tionally, advancements in bioinformatics and data analysis will be crucial for extracting
meaningful insights from the vast amount of NGS data generated. The higher order mul-
tiplexing will enable more samples to be processed in a shorter time and at a reduced
cost supported by the advances in robotics, liquid handling, and sample processing will
contribute to these advancements. Equally important will be advanced in faster and more
accurate bioinformatic data analysis, as well as data transfer and storage. With ongoing
technological improvements and cost reduction, NGS will become more accessible and
widespread, facilitating its integration into routine clinical practice, research, agriculture,
and environmental studies. The future of NGS is promising, promising to unlock new
frontiers of knowledge and catalyze advancements that will have a profound impact on
human health, agriculture, environmental conservation, and beyond.
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